
SRM Storage and File Types
WLCG Data Management Coordination Group
Version 4
May 2, 2006

Overview
This document uses the definitions in the SRM v3 specification as a starting point for
discussing the LHC experiment usage of SRM based storage system. It concerns itself
with issues of file and cache copy lifetime as well as how the user may specific the
“quality of storage” required in terms of number of copies of the file on disk and tape
based storage.

Section 1 describes core type definitions as defined in SRM v3 while Section 2 defines
more concretely the difference between get and put operations within the specification
with regards to file lifetimes.

Section 3 describes the subset of values for the core type definitions that will be used by
LCG tools, and Section 4 proposes two new type definitions for usage with the SRM
specification, Storage Class and Cache Attributes, that the LHC experiments see as
requirements in order to implement their data model.

1. Description of SRM Type Definitions
The following definitions are extracted verbatim from the SRM v3 specification
(http://sdm.lbl.gov/srm-wg/doc/v3/SRM.func.spec.v3.0.draft.pr1.html). This is considered
to be the reference definition of these terms and words when mentioned later in this
document.

File Storage Types
In SRM v3, as of SRM v2.1, there are three file storage types which represent the lifetime
of a file within the storage system. They have the following semantics:

• Volatile: This has an expiration time and the storage may delete all traces
• Durable: This has an expiration time, but the storage may not delete the file, and

should raise an error condition instead.
• Permanent: This has no expiration time.

NOTE: A “file” in this sense equates directly with a SURL or a namespace entry within
the storage system. It may have many different internal “copies” within the system (e.g.
on tape, in disk pools), but deleting the file means deleting it from the storage namespace.

The File Storage Type does not imply anything with regard to access latency of the file,
or the quality of service with regards to retention provided in storage system.

Retention Policies
Quality of Retention is a kind of Quality of Service. It acts as a notification to the storage
system of the intention of the user regarding the “preciousness” of the file, and what
would/could be done if the storage system lost the data.
There are three retention policies with the following semantics:

• Replica: Replica quality is appropriate for data that can be replaced since other
copies can be accessed in a timely fashion.

• Output: Output quality is an intermediate level and is used for data which can be
replaced by length or effort-full processes.

• Custodial: Custodial quality indicates that the data is in some sense unique, and
all attempts should be made to ensure it is kept.

Access Latency Mode
This refers to how latency to access a file is improvable. Latency is changed by storage
systems replicating a file internally on a storage area of different access latency.
Three access latency modes are defined, but in practice only the first two are used:

• ONLINE: This is the mode with the lowest latency, implying that there exists a
copy of the file in the cache and available for the client

• NEARLINE: This represents file stored on a high latency medium, such as tape,
which can have their latency automatically improved to ONLINE by a staging
operation

• OFFLINE: A file in OFFLINE requires human intervention to achieve low
latency.

Issuing a PrepareToGet call makes a file within the storage system ONLINE.

2. File Storage Type semantics on Get and Put operations
In the SRM specification, PrepareToPut and PrepareToGet are seen as symmetric
operations, dealing with storing and retrieving SURLs from a storage system, and
attributes in the operations are relevant to this SURL.

 We believe that this leads to confusion, and there is an inherent asymmetry in the two
operations:

• PrepareToPut is concerned with files within the storage system, represented by
SURLs. A file has a file storage type associated with it.

• PrepareToGet is concerned with the cache copy associated with a particular
SURL, in that we are asking for the storage system to provide us with a disk-
resident cache copy of a file with some associated properties in terms of its
accessibility.

In particular we believe that the requested lifetime and associated File Storage Type does
not refer to the same thing; On a PrepareToPut operation, the storage type and lifetime
apply to the SURL (or file within the storage system) and on a PrepareToGet operation
lifetime applies to the requested cache copy of the file that is returned as a TURL.

If we consider that PrepareToGet is only concerned with the cache copy, it is not clear
what the usage of a File Storage Type here is, since the lifetime is expressed numerically
in the file lifetime. One suggestion (from Timur) is that the File Storage Type was used
when using PrepareToGet to get a file from a remote SRM. This is now deprecated and
not implemented, so it is possible that perhaps this argument could be removed from
PrepareToGet.

3. LCG Usage of existing SRM parameters
The LHC experiments have expressed their wish to only use permanent files in storage
systems – i.e. there should never be automatic deletion of files from the storage
namespace. This means that all PrepareToPut operations will only use the File Storage
Type parameter with value “Permanent”. This is even true for “scratch” files, since the
experiments will do their own bookkeeping, and clean up the files afterwards. This is
done by the srmRm operation, which is a hard delete of the SURL that also removes it
from the namespace.

The experiments also feel that there is no need to specify a File Storage Type when doing
a PrepareToGet. All cache files are considered garbage collectable, and since it is
possible for a lifetime is specified, this is enough.

Also, the experiments also feel that there is no supported use case for specifying File
Storage Type on PrepareToGet in SRM v2.1 or v3, and perhaps this argument should be
removed from the operation.

Retention Policies are seen to not be expressive enough, and will not be used by the
LCG experiments. See below the proposed Storage Class which we believe is different
expression of the same concept.

4. LCG proposed additions to the SRM Specification

Storage Classes
Currently the SRMv3 PrepareToPut does not allow any way for a given File Storage
Class to specify Retention Quality. One possibility would be to require an extra
argument of type EnumRetentionQualityMode (which already exists in the
specification) which would specify the user requested retention quality.

Unfortunately, this does not seem to map well to LCG actual usage. We would suggest
using a different concept instead, Storage Class, which maps directly into the minimum
number of copies of a file that should be stored on Disk and Tape:

Storage Class Minimum Required Copies
 Tape Disk

Tape0Disk1 0 1
Tape0DiskN 0 >1
Tape1Disk0 1 0
Tape1Disk1 1 1

Tape1DiskN 1 N
TapeNDisk0 >1 0
TapeNDisk1 >1 1
TapeNDiskN >1 >1

… … …

Looking at the class Tape1Disk0, this means that we wish there to be always one copy
on tape, and there is no requirement to have a copy permanently on disk – any copy that
is created by the system can be garbage collected. Tape1Disk1 is an extension of this,
where we require the file to be “archived” on tape, usually for custodial reasons, but also
for a copy to permanently reside on disk, for low latency access reasons.

We must accept that there will be short periods of time when perhaps the criteria is not
met, especially when recovering from error, e.g. For a file in the Tape1Disk1, if the node
holding the copy fails in an unrecoverable way, there would be a period while it is being
staged back onto another node during which no disk copy would exist. This does not
mean the Storage Class of the file changes during this period, merely a slightly reduced
quality of service.

In order to change the Storage Class, this should be done by a separate (new) operation,
ChangeStorageClass. This may have limited access on the storage system so that, for
instance, only experiment production managers can change the Storage Class of a file.

Cache Attributes
Also, we would like to be able to specify extra properties for the TURL. Some of these
are currently inferred by storage systems, e.g. the uid/DN/VO of the requesting user
defines a VO-specific pool that they will be mapped into, the IP address of the requesting
host can be used to put a file either on a pool for local access or for WAN access. Also
some are currently in the SRM protocol, e.g. access Protocol and file lifetime.

We list below some TURL properties as a starting for discussion:

• Access Pattern (random/sequential)
• Access Speed (high/ low)
• Access Protocol (gridftp, rfio, dcap, …)

Also there are some properties then inherent to the node the file resides on that can affect
the quality of service of access to the TURL.

• File System parameters (block size,…)
• TCP Transfer Protocol Properties (for WAN/LAN transfers)

We believe there should be a new parameter on the PrepareToGet and PrepareToPut
operations that specific the attributes that are required for the TURL returned to get and
put a file respectively.

[To be expanded with Olof’s set of cache attributes…]

	SRM Storage and File Types
	Overview
	1. Description of SRM Type Definitions
	File Storage Types
	Retention Policies
	Access Latency Mode

	2. File Storage Type semantics on Get and Put operations
	3. LCG Usage of existing SRM parameters
	4. LCG proposed additions to the SRM Specification
	Storage Classes
	Cache Attributes

